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Field-induced quantum Hall ferromagnetism in suspended bilayer graphene
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We have measured the magnetoresistance of freely suspended high-mobility bilayer graphene. For magnetic
fields B > 1 T we observe the opening of a field-induced gap at the charge neutrality point characterized by a
diverging resistance. For higher fields the eightfold degenerated lowest Landau level lifts completely. Both the
sequence of this symmetry breaking and the strong transition of the gap-size point to a ferromagnetic nature of
the insulating phase developing at the charge neutrality point.
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I. INTRODUCTION

The unique electronic properties of monolayer and bilayer
graphene makes them promising candidates for future appli-
cations in nanotechnology. Though (bilayer) graphene on a
SiO2-substrate can show a mobility up to 2 m2/Vs,1 much
cleaner and higher mobility samples are necessary in order to
investigate its intrinsic properties, and, in particular, electron
interaction effects. Mobilities exceeding 10 m2/Vs can be
obtained by removing the SiO2 substrate underneath the
graphene2,3 or by depositing graphene on a boron nitride
crystal.4 These high-mobility samples display new interaction-
induced phenomena such as a fractional quantum Hall
effect,5–7 broken-symmetry states,8 a magnetic-field-induced
insulating phase,8 and quantized conductance at zero magnetic
field.9

In the two-dimensional electron system of bilayer graphene
(BLG) the application of a perpendicular magnetic field results
into an unconventional integer quantum Hall effect with
plateaus at filling factors ν = ±4, ± 8, ± 12, . . .10 The lowest
Landau level is eightfold degenerate, owing to spin, valley,
and layer-index degrees of freedom. In standard BLG samples
deposited on SiO2, magnetic fields around 10 T are required to
observe fully quantized plateaus and the eightfold degeneracy
of the lowest Landau level is only lifted for the highest quality
samples at magnetic fields exceeding 20 T.11 At 0 T the density
of states in BLG does not vanish at the charge neutrality point,
in contrast to single-layer graphene, therefore, even arbitrarily
weak interaction between charge from conduction and valence
band states will trigger excitonic instabilities which causes a
variety of gapped states.12–16

In this paper, we present two-terminal magnetotransport
experiments in suspended BLG at temperatures ranging from
1.3 to 4.2 K and magnetic fields up to 30 T. We observe a
sudden gap opening at the CNP already for B � 1 T and
the appearance of broken-symmetry states at filling factors
ν = ±1,±2,±3 for higher fields. Detailed investigation of
the energy gap at filling factor ν = 0 reveals an exchange-
interaction driven linear scaling at low magnetic fields, in
agreement with earlier reported results.8 At high fields we
observe the crossover to a much smaller gap. This high field
transition and the appearance of broken symmetry states at

ν = 1, 2, 3 are consistent with the formation of a quantum Hall
ferromagnetic state.13,17

II. EXPERIMENTAL BACKGROUND

We have prepared a suspended BLG sample using an
acid free method.18 Following standard techniques,19 we
first exfoliated flakes from highly oriented pyrolytic graphite
(HOPG) and deposited them on a Si/SiO2 substrate covered
with a 1.15-μm-thick LOR-A resist layer. Bilayer flakes were
then identified by their optical contrast.20 Subsequently, two
electron beam lithography steps were performed in order to
contact the flakes with Ti-Au contacts and to remove part of
the LOR-A below the graphene flakes. The resulting device is
freely suspended across a trench formed in the LOR-A with
two metallic contacts on each side, see inset of Fig. 1.

Carriers in the BLG sheet can be induced by applying a
back-gate voltage VG on the highly n-doped Si wafer. The
geometrical gate capacitance is given by a combination of the
vacuum gap (1.15 μm) and SiO2 substrate (0.5 μm). Using
a serial capacitor model we calculate a gate capacitance of
7.2 aF/μm−2 which directly relates the carrier concentration
to VG as n = α(VG − VCNP) with leverage factor α = 0.5 ×
1014 m−2V−1 and a finite voltage of the the CNP of VCNP =
1.2 V. In high magnetic fields, the geometric capacitance
increases due to the formation of edge states21 and α becomes
dependent on B. Therefore, the exact values of capacitance
were determined experimentally by identifying the filling
factors of quantized Hall plateaus in magnetic field; details
can be found in the appendix.

After mounting the devices were slowly cooled down to
4.2 K and current annealed22 by applying a dc bias current
up to 3 mA. This local annealing resulted into the high
quality sample with mobility μ ≈ 10 m2/Vs at a charge
carrier density n = 2 × 1011 cm−2. The value of the mobility
is calculated based on the dimension of suspended graphene
before current annealing: 0.3 μm wide and 2.1 μm long.
However, in the membrane the distribution of the temperature
while current annealing is nonhomogenous,9 which most
probably leads to the middle part of the membrane being
annealed and nonannealed regions close by the contacts. In this
case the estimation of the mobility value based on geometrical
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FIG. 1. (Color online) Resistance as a function of the concen-
tration by sweeping the backgate from −60 to 60 V for 0 T (black
squares) and 1 T (red circles). A constant contact resistance has been
removed. (Top-left inset) Temperature dependence of the resistance
at the CNP for 0 T and 1 T; top-right inset, SEM picture of our
suspended device.

dimensions might not be precise. We can also estimate the
quality of the obtained sample from the value of the magnetic
field at which the system enters the quantum Hall regime (B >

0.5 T). Assuming μB � 1 for QHE to exist,2 the observation
applies a lower bound for the mobility of 2 m2/Vs.

Measurements were performed with standard low-
frequency lock-in techniques in two-probe geometry with an
excitation current of 2 nA.

III. RESULTS

In Fig. 1 we show the data for the two-point resistance
R of our suspended BLG device at B = 0 T and B = 1 T
as a function of VG (top x axis) and n (bottom x axis),
respectively. The two-probe resistance R is characterized
by a magnetoresistance ρxx = L/w · Rxx with superimposed
Hall-resistance ρxy , R = (L/w) · ρxx + ρxy . Here L/w ≈ 6.7
is the aspect ratio of the device. The traces are corrected by phe-
nomenological contact resistances (1 k� on the electron side
and 1.7 k� on hole side) which were determined from a finite
resistance background observed at high carrier concentrations;
this background resistance increases by about a factor 2 in the
range B = 0· · · 30 T. These contact resistances most probably
originate from in-series connected nonannealed parts of the
sample,23 contact doping,24,25 and the finite resistance of the
current leads. The sharp maximum at the CNP of the zero-field
data already indicates the high electronic quality of the sample.
At 1 T the resistance already exhibits fully quantized plateaus
at filling factors ν = 4 and a developing quantization at ν = 8
and ν = 12. The formation of these plateaus is caused by a
quantization of ρxy = h/νe2 and the associated zero minima
in ρxx when the Fermi energy lies between two Landau levels10

and confirms the high electronic mobility (μ � 1/B) of our
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FIG. 2. (Color online) (a) Resistive behavior of the sample
near the CNP at T = 1.3 K. The dots mark the positions n =
3 × 1014,0 and −3 × 1014 m−2 where the gap opening has been
analyzed (see text for more details). (b) Resistance RCNP as a function
of B/T at T = 4.2 K and 1.3 K; (inset) qualitative picture of the DOS
near the CNP. The conduction at energy E is directly related to the
thermal excitation of electrons to the conduction edges Ec1 and Ec2.
(c) Calculated gap � as function field B for T = 1.3 K; the dashed
line represents the theoretical single electron Zeeman-energy gμBB.

device required to observe this unconventional quantum Hall
effect.

Additionally, as soon as a finite magnetic field is applied,
the resistance at the CNP, RCNP, starts to diverge. Whereas
at zero magnetic field RCNP is only very weakly temperature
dependent and comparable to the resistance quantum; already
at 1 T it is nearly an order of magnitude higher and starts
to increase strongly with decreasing temperature (see left
inset in Fig. 1). The nature of the gap opening at the CNP
is elucidated further in Fig. 2(a) where we show the resistance
as a function of carrier concentration n for several magnetic
fields. The diverging resistance at the CNP appears at a similar
magnetic field as the plateaus at filling factors −4 and 4; that
is, the eightfold degeneracy of the zero-energy Landau level
breaks directly into two fourfold degenerated Landau levels, as
already predicted theoretically26 and proven experimentally.27

At low fields B < 0.1 T we observe a small decrease of the
resistance maximum at the CNP (not shown in the figure). This
small decrease in resistance can be explained by the presence
of local inhomogeneities which give a small splitting between
the valley-polarized energies; the crossover of these energy
states at finite magnetic field results in a resistance minimum.
When the magnetic field is above B � 0.1 T we observe a
rapid increase of the resistance maximum at the CNP, shown
in Fig. 2(b). We can interpret this rapid increase as a result of
the spin splitting of the two energy levels at zero energy or by
disorder (e.g., unevenly charged top and bottom layer). The last
scenario would lead to a strong temperature dependence at zero
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field and ultimately for a big disorder to an insulating state at
zero field, as discussed in Ref. 28. The absence of a temperature
influence at 0 T and the CNP centered at very low gate-voltage
points to a nondisordered bilayer, therefore we interpret the
rapid increase by a result of spin splitting. The absence of
an energy level at E = 0 in the inset of Fig. 2(b) results
in a diverging resistance at the CNP. The resistance RCNP

at the CNP follows a classical Ahrrenius-activation behavior
Rxx ∝ exp (�/kBT ), in where � is a scale for the size of the
gap. The resistance increase scales best with ln (R) ∝ B/T ,
from which we obtain a gap � = 0.34 meV/T × B. This gap
is about a factor 3 times larger than the Zeeman-splitting
gμBB, which can be explained by the dominating exchange
energy.29 Equation (1) describes the total spin energy �S ,
determined by the sum of the single electron Zeeman energy
gμBB and the exchange energy Eex · (n↑ − n↓). Here n↑ − n↓
is the normalized difference between spin-up and spin-down
occupation.

�S = gμBB + Eex · (n↑ − n↓). (1)

At low fields the two energy levels are still overlapping
and the system is not fully spin polarized, (n↑ − n↓) < 1.
Assuming Gaussian-shaped Landau levels we can approximate
(n↑ − n↓) =

√
2

π

�S

�
with leads with help of Eq. (1) to the gap

�S = gμBB

1−Eex/�
. The observed spin enhancement by a factor 3

corresponds to a typical level width � = 2 meV and exchange
energy Eex = 1.3 meV at B = 1 T corresponding to a value
of about 2% of the Coulomb energy EC = e2/εr lB = 56 meV,
where lB is the magnetic length.

The behavior at the high magnetic field is experimentally
more complicated to access, because the measured resistance
rapidly exceeds several M�s and a quantitative analysis
becomes difficult. However, away from the CNP the mea-
sured resistances stay low enough to guarantee a reliable
interpretation up to the highest magnetic fields. This situation
is illustrated in the inset of Fig. 2(b) where we sketch the
quantized density of states in the lowest Landau level around
the CNP with a gap 2� opening at E = 0. When the Fermi
energy is located at a finite energy E < � (i.e., still inside
the localized parts of the DOS), conduction will occur by
thermal excitation to the conductivity edges Ec1 and Ec2

of the extended states. The resistance R(E) at this energy
will then be given by

R(E) ∝ e
�(E)+E

kbT + e
�(E)−E

kbT = 1

2
e

�(E)
kbT cosh

(
E

kbT

)
. (2)

For relatively small energies E � kbT the cosh-term can be
approximated by a first-order Taylor expansion cosh ( E

kBT
) ≈

1 + 1
2

E2

k2
BT 2 = γ (E). For small E we can interpret Eq. (2) as

RCNP ∝ 1
2e

�(E)
kbT γ (E). At the CNP, E = 0, this approaches a

trivial Ahrrenius behavior, while for nonzero fixed energy
γ (E) is an energy-dependent renormalization factor which
for E � kbT is independent of T .

We analyze the resistance at concentrations n = ±3 ×
1014 m−2 [dots marked in Fig. 2(a) and multiply this data
with a fixed constant to make an overlap with the low field
data]. All data points R > 1 M� in Fig. 2(b) are verified by
this method and therefore reliable up to the highest field. This

proper scaling for both low and high resistances also excludes
a strong effect of the local heating due to the finite excitation
voltage we apply over the sample.

From Fig. 2(b) we see that the scaling of the resistance
at high magnetic fields is remarkably different from the
linear field increase at low fields. This observation is again
visualized in Fig. 2(c) where we show that the calculated
gap strongly bends and the slope strongly reduces. In this
regime the gatesweeps are packed more densely for increasing
magnetic field and the energy E gets comparable to the thermal
activation kbT thus we are no longer able to calculate the
gap size with a simple Arrhenius behaviour. Experimental
limitations of our suspended samples do not allow us to access
much higher temperatures, therefore we can only speculate
here about further gap study.

At high enough fields we expect to fulfill the criteria of
fully spin-polarized system (n↑ − n↓) → 1. The sudden strong
change of the gap size suggests that our system indeed gets
fully spin polarized, in literature also known as the crossover
to a quantum Hall ferromagnetic state. Further increase of
the magnetic field leads hypothetically to a dominating spin-
splitting gμBB, because Eex ∝ √

B. Further specific research
in titled magnetic fields is necessary to decouple the influence
of the single electron Zeeman energy and exchange energy.

After detailed study at low concentrations we have a closer
look at the manifestation of the QHE at higher concentration.
In Fig. 3(a) we show the corrected two-point resistance as a
function VG at 4.2 K for B = 1 T, 5 T, 12 T, 17.5 T, and 30 T.
Apart from the distinct ν = ±4 plateaus which are already
well pronounced at 1 T, additional plateaus at ν = ±3,±2,

and ±1 start to appear in higher fields. In Fig. 3(b) we show the
derivative | dR

dVG
| of the resistance curves, where we can already

recognize distinct maxima and minima for lower fields.
In Fig. 3(c) we follow the position of the minima with

increasing magnetic field. We see that the maximum applied
gate voltage VG = 60 V limits the observation of filling factors
ν = ±4 up to 9 T, while ν = ±2 remains observable until fields
of 15–20 T and filling factor ν = ±1 is still observable at the
highest applied field (30 T). From Fig. 3(c) we observe that
the position of the minima strongly deviates from the linear
relationship between the induced charge carrier concentration
n and the applied magnetic field B, n = ν eB

h
. The equidistance

of the minima for fixed magnetic fields excludes a capacitance
change due the bending of the membrane, which can be
expected by the particular big difference between the electric-
field-induced bending (10–20 nm)30 and the vacuum gap over
which graphene is suspended (∼1.5 μm). In the Appendix we
discuss in more detail how to extract the exact relation between
the applied field B and the induced charge concentration n

from this data.
Experiments on suspended graphene samples are mainly

performed in two-probe configuration. Experimental limita-
tions of the annealing procedure do not allow us to obtain very
homogenous samples in four-probe configuration. Therefore
more effort has to be done to do a proper analysis on both the
magnetoresistance and Hall resistance. In Fig. 4 the appearance
of the different filling factors are further elucidated; in
particular at positive gate voltages, the influence of contact
resistance is here experimentally the smallest. As shown in
Fig. 3(b) the derivative of our data, dR

dVG
, shows already at
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FIG. 3. (Color online) (a) Gatesweeps R(VG) at constant mag-
netic fields B = 1 T, 5 T, 12 T, 17.5 T, and 30 T for T = 4.2 K;
the curves are shifted up for clarity. (b) Derivative dR/dVG for the
curves in (a). (c) Position of the minima for ν = ±12, ±8, ±4, ±3,
±2 and ±1 as function of the magnetic field.

very low field a very clear appearance of filling factors ν =
1, 2, 3, and 4. A small change in the slope of Rxy causes
a very distinct minimum in the derivative. Theoretically, we
can use a model that directly describes the magnetoresistance
Rxx in terms of the Hall resistance Rxy

31 (i.e., Rxx ∝ n
dRxy

dn
).

In Fig. 4(a) we study the appearance of the filling factors
by plotting the obtained magnetoresistances Rxx − R0. Here
we removed from all data the linear background R0 of the
12-T data shown in the inset of Fig. 4(a) and centered all
curves around the x axis. We used the obtained leverage
factor α(B) to determine the exact concentration n. Already at
3 T we observe the appearance of clear oscillations around
ν = 2 and ν = 3 followed by the appearance of ν = 1 at
5 T. The amplitude A of the oscillation is defined by the
difference between the minimum and the first maximum.
A single oscillation can be best analyzed by applying the
Lifshitz-Kosevic equation32 A · cos (f (B)), here A is the
amplitude and f (B) a field-dependent function that determines
the frequency and phase. The amplitude A is finite due to the
Landau-level broadening, and is damped by the Dingle factor
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FIG. 4. (Color online) (a) Rxx oscillations after removing linear
background from n dR

dn
for B = 3 T, 5 T, 12 T, and 20 T at 4.2 K. (b)

Dingle plot of ν = 8 and ν = 4: amplitude A of the oscillations as a
function of the inverse field 1/B. (c) Dingle plot for ν = 3, 2, and 1.
(d) Schematic plot of the appearance filling factors with increasing
magnetic field. The dashed lines show the center of the Landau level,
while the gray shaded area is the Landau level broadening determined
by the Dingle temperature TD .

exp (−β · TDmc/B) in where TD is the Dingle temperature mc

the cyclotron mass in units of electron mass me, B the magnetic
field, and β = 14.694 T/K. In Fig. 4(b) the amplitudes A

for ν = 4 and ν = 8 are plotted as a function of 1/B, which
affects in a linear decrease with slope β · TDmc. If we assume
the cyclotron mass in bilayer graphene to be mc ≈ 0.033 · me

(corresponding to γ = 0.4 eV ,see Ref. 33 and references in
there) we obtain the Dingle temperatures TD in Table I. We
repeat the same procedure for filling factors 1, 2, and 3 in
Fig. 4(c).

Compared to ν = 4, fully quantized at B = 1 T, the Dingle
temperatures TD for the degenerate filling factors are one order
of magnitude larger, which means fields B � 10 T are required
to observe full quantization; in particular, filling factor ν = 1
becomes quantized at fields of B � 30 T.

In Fig. 4 we illustrate qualitatively the appearance of the
different Landau levels for increasing magnetic field. The

TABLE I. Dingle temparatures TD .

ν 8 4 3 2 1

TD (K) 2.4 ± 0.4 1.4 ± 0.4 29.2 ± 4 9.2 ± 1.2 58 ± 8
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FIG. 5. (Color online) Relation between the induced charge
carrier concentration per applied magnetic field α(B) = n/B and the
applied magnetic field B for B = 0 (solid circles) and B �= 0 (open
circles). The plotted line shows the interpolated α(B) from which we
determined a reliable value of the concentration n.

corresponding gray shaded areas describe the Landau level
broadening �, directly determined by the Dingle temperature
TD; higher Dingle temperatures correspond broader Landau
levels. While the position of the energy moves linearly with
increasing field, the Landau level broadening � is proportional
to the square root of the applied field � ∝ √

B. With increasing
field the overlap between the shaded areas decreases, and the
plateau starts to appear. As we can see from Fig. 4(d) Landau
levels around ν = 2 and ν = 3 do indeed not overlap anymore
for similar magnetic field, however, the shaded areas for ν = 1
overlap until higher fields. Finally the overlapping of filling
factors ν = ±1 disappears at a similar magnetic field as the
resistance at the CNP starts to bend strongly, supporting the
idea of a crossover to a fully spin-polarized state at ν = 0.

After the appearance of the nondegenerated filling factors
ν = 4 and 8 a gap at ν = 0 forms, followed by filling factors
ν = 2 and at high fields ν = 1 and 3. This sequence agrees
with the proposed model of the formation of a quantum Hall
ferromagnet in the lowest Landau level and the observed
behavior at the CNP.

IV. CONCLUSION

In conclusion we have performed experiments on a sus-
pended BLG sample which shows us a field-induced gap
at the CNP for fields B > 1 T. The gap at ν = 0 opens

simultaneously with the formation of filing factors ν = ±4,
which implicates the eightfold degenerated lowest Landau
breaks directly in two fourfold-degenerated spin-polarized
subbands. At high magnetic fields we observe a smooth
transition to a much smaller gap, this is consistent with
the picture of the formation of a spin-polarized quantum
Hall ferromagnetic state. Following the breaking of the
lowest Landau level we observe a breaking of ν = 0 in
ν = ±2 and finally in ν = ±1 and ν = ±3, in agreement
with the theoretically proposed model of a quantum Hall
ferromagnet.
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APPENDIX

Figure 5 shows the relation between α and the applied
magnetic field. The capacitance of the sample increases from
the geometrical value 0.5 ×1014 m−2 V −1 up to 1.8 ×
1014 m−2 V −1 at 9 T and saturates at this value for the
highest fields. This effect is also observed implicitly in recent
publications8,34 on high quality suspended bilayer devices, but
not mentioned by authors in the text.

As discussed in Ref. 21 the increase in capacitance of the
system under the applied magnetic field could be understood
from the deviation from the flat-plate capacitor model. At
the point when the width of the graphene flake is smaller
or comparable to the distance to the back gate the flat-
plate capacitor model can no longer be applied. The charge
carrier distribution in graphene becomes nonhomogenous and
increases at the edges. Since the classical cyclotron radius of
the charge carrier depends inversely on the magnetic field, the
increase of B will cause edge channels in the quantum Hall
regime to propagate closer to the edge, where the density can
be a few times higher than in bulk graphene. This would result
in an increase in capacitance extracted from QHE plateaus.
The cyclotron radius is expected to be dependent on the
charge carrier density as well. The exact calculations for the
different device’s geometries with charge carrier distribution
in graphene, compared to the experiments, are the subject of
another paper.21
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